logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Décomposition en facteurs premiers

Dans cet exercice, nous cherchons des couples d'entiers AB qui satisfont l'équation 3 x 21 A = 14 x 9 B. Nous utilisons la décomposition en facteurs premiers pour identifier les puissances de chaque facteur. Nous commençons par décomposer 21 A en 3 x 7 A, ce qui donne 3 x 3 A x 7 A. Ensuite, nous décomposons 14 x 9 B en 2 x 7 x 3 au carré x B. Nous constatons cependant que le 2 n'apparaît pas dans la décomposition de 3 x 21 A et ne peut donc pas être compensé par des valeurs de A ou de B. Par conséquent, il n'existe aucun couple A et B qui satisfait l'équation.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Critère d'arrêt : n est premier ?

Dans cet exercice, nous utilisons le critère d'arrêt pour déterminer si un nombre est premier ou non. Ce critère stipule qu'un nombre n'est pas premier s'il admet un diviseur premier compris entre 2 et la racine carrée de ce nombre. En utilisant ce critère, nous évitons de tester tous les nombres premiers jusqu'au nombre à tester. Ainsi, pour déterminer si 349 est premier, nous avons calculé la racine carrée de ce nombre, ce qui est d'environ 18,7. Nous avons ensuite testé tous les nombres premiers inférieurs ou égaux à 17 pour savoir s'ils divisent 349. En vérifiant qu'aucun de ces nombres ne divise 349, nous avons conclu que 349 est un nombre premier. Il est important de connaître tous les nombres premiers avant 20, car ils sont utilisés régulièrement dans les exercices.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Démo infinité des premiers

Cet exercice démontre qu'il existe une infinité de nombres premiers en utilisant un raisonnement par l'absurde. On suppose qu'il n'y en a qu'un nombre fini, puis on crée un ensemble de nombres premiers qu'on multiplie ensemble et à qui on ajoute 1 pour créer un nouveau nombre, P étoile. On montre ensuite, en montrant qu'aucun nombre premier n'est un diviseur de P étoile, qu'il n'existe aucun indice tel que Pi divise P étoile. Mais en utilisant le critère d'arrêt, on montre qu'il existe un nombre premier P i qui divise P étoile, ce qui contredit ce qu'on a trouvé à la question 1. Cela implique qu'il existe une infinité de nombres premiers et qu'on a donc démontré l'exercice en question.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Décomposition et équation

Dans cette transcription de vidéo, nous apprenons comment résoudre une équation en trouvant les solutions entières de l'équation x² + 2x + 1 = 84. Pour ce faire, nous utilisons la décomposition en facteurs premiers de 84, soit 2² x 3 x 7, pour trouver toutes les possibilités d'écriture de 84 comme un produit de trois facteurs distincts. Nous trouvons deux possibilités: 2 x 3 x 14 et 3 x 4 x 7. En testant ces deux possibilités, nous trouvons que la seconde est la bonne, car elle correspond à x = 3. Ainsi, nous avons résolu l'équation rapidement.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Nombre de diviseurs

Cet exercice consiste à déterminer le nombre de diviseurs de 300 puissance 300. En décomposant ce nombre en facteurs premiers (3 fois 2 au carré fois 5 au carré), on peut obtenir sa décomposition en facteurs premiers. En utilisant une formule simple de dénombrement, on peut alors calculer le nombre de diviseurs (301 fois 601 fois 601), qui est égal à 108 721 501 diviseurs. Pour trouver un nombre avec plus d'un milliard de diviseurs, il suffit de multiplier le nombre de diviseurs par 10, ce qui peut être obtenu en ajoutant 7 puissance 9 à la décomposition en facteurs premiers de 300 puissance 300.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Utiliser Fermat 1/2

Dans cet exercice, on doit démontrer que pour tout nombre premier P différent de 3 et tout entier n, 3 puissance N plus P moins 3 puissance N plus 1 est divisible par P. Pour cela, on utilise le petit théorème de Fermat qui énonce que si A est un nombre entier et P un nombre premier qui ne divise pas A, alors A puissance P moins 1 est congrue à 1 modulo P. En appliquant ce théorème avec 3 et P, on obtient que 3 puissance P moins 1 est congrue à 1 modulo P. Ensuite, en multipliant cette équation par 3 puissance N plus 1 et en simplifiant, on montre que 3 puissance N plus P moins 3 puissance N plus 1 est congruent à 0 modulo P, prouvant ainsi la divisibilité recherchée.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Utiliser Fermat 2/2

En utilisant le petit théorème de Fermat, on montre que 4 puissance 28 moins 1 est divisible par 29. Pour montrer que 4 puissance n moins 1 est divisible par 3 pour toute n, on utilise la congruence 4 puissance n est congruent à 1 modulo 3. En utilisant des congruences, on montre que 4 puissance 4k moins 1 est divisible par 5 et par 17. Finalement, on déduit que 4 puissance 28 moins 1 est divisible par 3, 5, 17 et 29, ce qui nous permet de déduire quatre diviseurs premiers de 4 puissance 28 moins 1.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Vers la sup : racine puissance n

Dans cet exercice, nous utilisons le théorème de Bézout pour calculer différentes expressions mathématiques. Nous commençons par calculer 1 + racine de 6 au carré, 1 + racine de 6 puissance 4, et 1 + racine de 6 puissance 6, en utilisant les identités remarquables et les puissances. Ensuite, nous décomposons les nombres 847 et 342 en facteurs premiers et concluons qu'ils sont premiers entre eux. Dans la deuxième partie, nous généralisons ces calculs en utilisant des variables an et bn. Nous déterminons les valeurs de a1, b1, a2, b2, a4, b4, a6, et b6 et nous calculons an + 1 et bn + 1 en fonction de an et bn. Ensuite, nous démontrons que si 5 ne divise pas an + bn, alors il ne divise pas non plus an + 1 et bn + 1, en utilisant la contraposée et le lemme de Gauss. Enfin, nous démontrons que si an et bn sont premiers entre eux, alors an + 1 et bn + 1 le sont également, en montrant que le critère de premier entre eux se transmet de proche en proche.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Congruence : équation degré 2

Dans cet exercice, nous devons résoudre l'équation x²-2x2 congrue à 0 modulo 17. Tout d'abord, il est demandé de montrer que α = 5 est une solution de l'équation, ce qui est vérifié en remplaçant x par 5. Ensuite, en posant x = x-α, nous pouvons trouver toutes les solutions de E. En faisant cela, nous obtenons l'équation x + 5 au carré - 2(x + 5) + 2 congru à 0 modulo 17, que nous simplifions pour obtenir grand x carré + 8x congru à 0 modulo 17. En factorisant, nous pouvons dire que 17 divise soit x, soit x+8. Ainsi, nous avons deux possibilités : x est congru à 5 modulo 17 ou x est congru à 14 modulo 17. Donc, les solutions de E sont x congru à 5 modulo 17 ou x congru à 14 modulo 17.