- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Terminale
Première
Seconde
MPSI/PCSI
2BAC SM Maroc
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Arithmétique dans Z
- Structures Algébriques
- Calcul matriciel et systèmes
- Espaces Vectoriels
- Matrice 2ième Partie
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Maths
Algèbre
MPSI/PCSI
Groupe avec des fonctions
Dans cette vidéo, Corentin aborde plusieurs concepts liés aux structures algébriques, en se concentrant sur la démonstration que l'ensemble R étoile croyeur, muni de la loi étoile, forme un groupe et sur la question de sa commutativité. Il aborde également la simplification de l'expression xy puissance n dans R étoile croyeur pour x, y appartenant à cet ensemble et n appartenant à n étoile.
Il commence par rappeler la définition d'un groupe comme étant un ensemble muni d'une loi interne associative, possédant un élément neutre et où chaque élément a un symétrique. Il précise également que la loi doit être interne.
Ensuite, il démontre que la loi étoile est interne en montrant que le résultat des opérations xy et x'y' appartient toujours à R étoile. Il prouve également l'associativité de la loi étoile en montrant que peu importe l'ordre dans lequel les opérations sont effectuées, le résultat reste le même.
Il cherche ensuite l'élément neutre de la loi étoile en posant un système d'équations et déduis que l'élément neutre est (1,0). Il détermine également l'inverse d'un couple (x,y) en résolvant un autre système d'équations et conclut que tout élément (x,y) a un inverse qui est (1/x,-y/x).
Il aborde ensuite la question de la commutativité de la loi étoile et montre qu'elle n'est pas vérifiée en exhibant un contre-exemple.
Enfin, il passe à la deuxième question et explique que la puissance n du couple (x,y) signifie effectuer la loi étoile sur ce couple n fois. Il montre que pour n=2 et n=3, le résultat peut être exprimé sous une forme spécifique, et propose de prouver par récurrence que pour tout n dans n étoile, le résultat de xy puissance n est de cette forme spécifique.
Il conclut en encourageant les spectateurs à mener cette démonstration par récurrence eux-mêmes.
Maths
Algèbre
MPSI/PCSI
Lois usuelles
Salut à tous ! Dans cette vidéo, nous allons étudier une loi, notée "étoile", qui s'applique sur un ensemble R privé de 1. Cette loi est définie par x étoile y = x + y - x * y. Nous nous posons plusieurs questions sur cette loi. Tout d'abord, nous voulons déterminer si elle est associative et commutative.
Pour l'associativité, nous calculons (x étoile y) étoile z et nous obtenons une expression. Ensuite, nous calculons x étoile (y étoile z) et obtenons une autre expression. En comparant les deux, nous constatons qu'elles sont égales. Nous concluons donc que la loi est associative.
Ensuite, nous prouvons que la loi est commutative en montrant que x étoile y est égal à y étoile x, en utilisant les propriétés de commutativité de l'addition et de la multiplication dans l'ensemble R.
Nous passons ensuite à la question suivante qui concerne l'existence d'un élément neutre pour cette loi. Nous cherchons E tel que x étoile E soit égal à x. En simplifiant l'expression, nous trouvons que E doit être égal à 0. Donc, la loi admet 0 comme élément neutre.
Enfin, nous étudions si chaque réel x a un inverse pour cette loi. En posant x étoile A = 0, nous isolons A et trouvons que A = x / (x - 1), en assumant que x est différent de 1.
Pour conclure, nous donnons une formule explicite pour la puissance n-ième de x (notée x puissance n). En calculant les premières puissances de x, nous remarquons une régularité et trouvons la formule de récurrence suivante : x puissance n = (1 - 1/x) puissance n. Notons que la puissance n-ième ici représente la répétition de l'opération étoile n fois.
Voilà un résumé SEO friendly de cette vidéo sur la loi étoile dans l'ensemble R privé de 1.
Maths
Algèbre
MPSI/PCSI
Neutre et inverse
Dans cette vidéo, Corentin explique le concept de groupe en mathématiques. Il commence par donner l'énoncé qui définit un groupe comme étant un ensemble muni d'une loi étoile associative, avec un élément neutre à gauche et où chaque élément possède un inverse à gauche. Il souligne que pour montrer qu'un ensemble E est un groupe pour la loi étoile, il faut également prouver que l'inverse à gauche est également un inverse à droite.
Pour démontrer cela, Corentin utilise les inverses à gauche x prime et y prime de xy, où yx est égal à l'élément neutre E. En multipliant à gauche par y prime y, il montre que xy est égal à E en utilisant l'associativité de la loi étoile. Ainsi, il démontre que l'inverse à gauche est également un inverse à droite.
Ensuite, Corentin se penche sur l'unicité de l'élément neutre à gauche et montre que si F et E sont tous les deux neutres à gauche, alors ils sont égaux. Il utilise le fait que F fois E est égal à E par hypothèse sur F, et que E fois F est également égal à E. Comme E est un élément neutre à gauche, il en déduit que F est égal à E.
Enfin, Corentin montre que l'élément neutre à gauche est également neutre à droite en utilisant l'inverse de x prime. Il montre que x fois E est égal à x en utilisant l'associativité de la loi étoile et en prouvant que l'inverse à gauche est également l'inverse à droite.
En conclusion, Corentin résume les étapes de sa démonstration en montrant que l'élément neutre à gauche est également neutre à droite, qu'il est unique, et que l'inverse à gauche est également l'inverse à droite. Ainsi, il conclut que toutes les hypothèses sont réunies et que E est bien un groupe.
Maths
Algèbre
MPSI/PCSI
Inverse
Dans cette vidéo, Corentin aborde un exercice qui consiste à démontrer que certaines lois donnent à l'ensemble J une structure de groupe, et à déterminer si ce groupe est abélien ou non.
Il commence par parler de la première loi, appelée "loi étoile", qui associe à deux éléments x et y dans l'intervalle (-1,1), l'opération (x+y)/(1+xy). Il veut d'abord prouver que cette loi est interne, c'est-à-dire que x étoile y appartient à J. Il introduit une fonction f(x) = (x+y)/(1+xy) et montre que cette fonction est dérivable et strictement croissante sur l'intervalle (-1,1). Grâce à cela, il conclut que la loi étoile est bien interne. Ensuite, il montre l'associativité de cette loi, ce qui nécessite quelques calculs. Il explique qu'il est également possible de trouver l'élément neutre et l'inversibilité de la loi étoile en effectuant des tests avec des valeurs particulières, mais il ne donne pas de détails sur ces calculs. Finalement, il conclut que la loi étoile est commutative, ce qui signifie que l'ensemble J forme un groupe abélien.
Ensuite, Corentin aborde une deuxième loi, toujours appelée "loi étoile", mais cette fois-ci pour l'ensemble G qui est l'espace R². Cette loi associe à deux couples (x,y) et (x',y') de G le couple suivant : (x * x' - y * y', x * y' + x' * y). Il montre que cette loi est interne en montrant que le résultat de l'opération appartient à G. Il procède ensuite à de nombreux calculs pour démontrer l'associativité de la loi étoile, en utilisant des expressions algébriques pour les éléments du groupe G. Puis, il cherche l'élément neutre en testant différentes valeurs de couples et finalement trouve que le couple (0,0) est neutre pour la loi étoile. Il prouve l'inversibilité en testant un couple particulier, et montre qu'il existe un inverse pour tout couple (x,y) dans G. Enfin, il démontre que la loi étoile n'est pas commutative en montrant que le résultat de l'opération dépend de l'ordre des couples dans l'opération. Il conclut donc que G n'est pas un groupe abélien.
En résumé, Corentin aborde deux lois différentes, la première sur un ensemble J et la deuxième sur un ensemble G. Il montre que la loi étoile donne à J une structure de groupe abélien, tandis que la loi étoile sur G ne forme pas un groupe abélien.
Maths
Algèbre
MPSI/PCSI
elements réguliers
Dans cette vidéo, Corentin aborde un exercice théorique portant sur un groupe fini G. Il est demandé de démontrer qu'il existe un élément X dans G qui est différent de l'élément neutre E et égal à son inverse.
Corentin commence par utiliser des sous-parties de G pour exploiter l'hypothèse que le cardinal de G est pair. Il pose l'ensemble f(X) qui est égal à l'ensemble des éléments X multiplié par leur inverse.
Ensuite, il remarque que pour des éléments X et Y distincts, les ensembles f(X) et f(Y) sont soit distincts soit confondus. Plus précisément, soit f(X) est égal à f(Y) ou l'intersection de f(X) et de f(Y) est un ensemble vide.
En effet, si Y est égal à X-1 (l'inverse de X), alors l'ensemble f(X) est égal à l'ensemble f(Y). Si Y est différent de X-1, alors l'intersection de f(X) et de f(Y) est un ensemble vide.
De là, Corentin déduit que le groupe G peut s'écrire comme une réunion disjointe de tous les ensembles f(X) différents. En d'autres termes, G est égal à l'union de tous les ensembles f(X) pour X appartenant à G et différent de l'élément neutre.
Corentin réalise que au moins l'un de ces ensembles f(X) est de cardinal 1, c'est-à-dire qu'il ne contient qu'un seul élément. Il s'agit de l'ensemble f(E). En effet, on a E-1 qui est égal à E, ce qui réduit l'ensemble f(E) à juste l'élément E.
Si tous les autres ensembles étaient de cardinal 2, alors le groupe G aurait un cardinal impair, ce qui contredit l'hypothèse de départ selon laquelle le cardinal de G est pair.
Il en conclut donc qu'il existe un élément X différent de l'élément neutre E tel que le cardinal de l'ensemble f(X) soit égal à 1, autrement dit, X est égal à son inverse.
Maths
Algèbre
MPSI/PCSI
Sous-groupes
Dans cette vidéo, Corentin aborde un exercice qui mélange l'algèbre générale et l'algèbre linéaire. Il commence par présenter le problème qui consiste à déterminer si certaines parties de GLN2R sont des sous-groupes de GLN2R, l'ensemble des matrices inversibles à coefficients réels.
Pour la première question, on donne l'ensemble des matrices diagonales inversibles à coefficients non nuls. Corentin montre que cet ensemble, noté H1, est bien une partie de GLN2R. Il explique que pour chaque matrice diagonale, il suffit de prendre l'inverse en prenant l'inverse de chaque coefficient diagonal. Le produit de ces deux matrices donne la matrice identité. Il vérifie également que la matrice identité appartient à H1, démontrant ainsi la stabilité par rapport à l'élément neutre, au produit et à l'inverse.
Pour la deuxième question, Corentin étudie l'ensemble H2 qui consiste en des matrices 2x2 telles que A est différent de zéro. Il montre que H2 est également une partie de GL2 de R en calculant son inverse grâce à un petit système linéaire. Il démontre également la stabilité par rapport à l'élément neutre, au produit et à l'inverse.
Enfin, pour la troisième question, Corentin remarque que la matrice identité n'appartient pas à l'ensemble H1-I3, montrant ainsi que H1-I3 n'est pas un sous-groupe de GL2 de R.
En résumé, Corentin aborde un exercice qui consiste à déterminer si certaines parties de GLN2R sont des sous-groupes de GLN2R. Il montre que l'ensemble H1, constitué de matrices diagonales inversibles à coefficients non nuls, est un sous-groupe de GLN2R, tandis que H2, constitué de matrices 2x2 avec A différent de zéro, est également un sous-groupe de GL2 de R. Cependant, il démontre que H1-I3 n'est pas un sous-groupe de GL2 de R, car la matrice identité n'appartient pas à cet ensemble.
Maths
Algèbre
MPSI/PCSI
Morphisme de groupe
Dans cette vidéo, Corentin aborde la question de savoir si un sous-groupe d'un groupe produit est nécessairement le produit de deux sous-groupes. Pour expliquer cela, il commence par rappeler ce qu'est un groupe produit. Un groupe produit est défini comme l'ensemble des couples (x1, x2) composés d'un élément x1 du groupe G1 et d'un élément x2 du groupe G2. La loi de composition sur ce groupe produit est définie comme x1y1 * x2y2 = (x1 * x2, y1 * y2), où * représente la loi interne dans chaque groupe.
Ensuite, Corentin donne un contre-exemple pour montrer que ce n'est pas toujours le cas. Il prend les groupes G1 et G2 comme étant l'ensemble des entiers positifs (z+). Il montre ensuite que le sous-groupe des couples (x, x) dans le groupe produit n'est pas le produit de deux sous-groupes. Il précise que si cela était le cas, cela signifierait que ce sous-groupe serait le produit de z * z, qui est l'ensemble des couples (x, y) avec x appartenant à z et y appartenant à z. Cependant, le couple (1, 2) n'appartient pas à ce sous-groupe, ce qui montre que ce sous-groupe des couples (x, x) ne peut pas être écrit comme le produit de deux sous-groupes.
En conclusion, la réponse à la question posée est non, et Corentin a présenté un contre-exemple pour le prouver.
Maths
Algèbre
MPSI/PCSI
Automorphisme
Dans cette vidéo, Corentin explique la notion d'automorphisme, qui consiste à déterminer les morphismes injectifs et surjectifs de Z' plus dans lui-même.
Il commence par rappeler ce qu'est un morphisme de groupe, en expliquant que c'est une application qui respecte les lois du groupe.
Ensuite, il montre que pour tout morphisme f de Z' dans Z', f de n est égal à n fois f de 1, grâce à une démonstration par récurrence.
Il précise que cette égalité est valable aussi pour les nombres négatifs.
Ainsi, les morphismes de Z' plus dans Z' plus sont les fonctions qui vérifient f de n est égal à n fois f de 1, pour tout n dans Z.
Ensuite, il se concentre sur les morphismes surjectifs et trouve que f de 1 est égal à -1 ou 1.
Il conclut que les morphismes surjectifs sont ceux qui vérifient f de n est égal à n ou -n.
Enfin, il aborde les morphismes injectifs en utilisant le théorème selon lequel un morphisme est injectif si et seulement si le noyau de f est réduit à l'élément neutre.
Il montre que le noyau de f est égal à 0 si f de 1 est différent de 0, ce qui implique que f est injectif.
Sinon, si f de 1 est égal à 0, alors f n'est pas injectif car tous les éléments n de Z vérifient f de n est égal à 0.
Il conclut que tous les morphismes de Z' plus dans Z' plus sont injectifs, sauf l'application identiquement nulle.
Maths
Algèbre
MPSI/PCSI
Groupe Commutatif
Salut à tous, c'est Corentin. Aujourd'hui, nous allons voir comment déterminer si un ensemble répond aux critères d'un corps commutatif. Un corps est un ensemble muni de deux lois (addition et multiplication) qui satisfont certaines conditions. Nous allons utiliser la méthode 1, la plus longue, pour vérifier ces conditions.
Premièrement, nous devons vérifier si l'addition est bien interne à notre ensemble. Nous faisons donc une addition entre deux éléments et nous vérifions si le résultat appartient à notre ensemble.
Ensuite, nous devons vérifier si l'addition est associative et commutative. Ces propriétés sont nécessaires pour qu'un groupe commutatif soit formé.
Nous cherchons ensuite l'élément neutre pour l'addition. Dans notre cas, l'élément neutre est 0.
Nous cherchons également l'élément symétrique, c'est-à-dire l'opposé de chaque élément. Nous utilisons cette propriété pour vérifier si l'ensemble forme bien un groupe commutatif.
Ensuite, nous passons à la multiplication. Nous vérifions si la multiplication est interne à l'ensemble et si elle est associative et commutative.
Nous cherchons également l'élément neutre pour la multiplication, qui est 1 dans notre cas.
Enfin, nous cherchons l'inverse pour la multiplication. Pour être certain que l'inverse appartient à notre ensemble, nous utilisons la technique du conjugué.
Une fois toutes ces conditions vérifiées, nous pouvons affirmer que l'ensemble répond aux critères d'un corps commutatif.
Cette méthode est assez longue, donc nous pouvons utiliser la méthode 2, plus rapide. Dans cette méthode, nous montrons simplement que l'ensemble est un sous-corps d'un ensemble plus grand et nous vérifions quelques conditions supplémentaires.
En résumé, il est important de connaître la définition d'un corps et de penser à utiliser le conjugué pour vérifier si l'inverse appartient à l'ensemble. De plus, il est plus rapide de montrer qu'un ensemble est un sous-corps plutôt que de vérifier toutes les conditions une par une.
Voilà, merci à tous et à bientôt !
Maths
Algèbre
MPSI/PCSI
Groupe Symétrique
Dans cette vidéo, Corentin aborde le sujet des matrices et des anneaux. Il commence par rappeler ce qu'est un anneau, qui est un ensemble muni de deux lois de composition interne (l'addition et la multiplication) satisfaisant certaines propriétés. Il explique ensuite ce qu'est un sous-anneau, qui est un sous-ensemble d'un anneau plus grand ayant les mêmes lois de composition interne.
Corentin montre alors que l'ensemble A, qui est l'ensemble des matrices dont les coefficients sont des entiers naturels, est un sous-anneau de l'ensemble M2(R) des matrices 2x2 à coefficients réels. Il prouve cela en montrant que l'addition et la multiplication de matrices dans A restent dans A. Il termine en vérifiant que la matrice identité appartient également à A.
Ensuite, Corentin aborde la question des éléments inversibles de A. Une matrice M est dite inversible si elle possède une matrice inverse M' telle que le produit de M par M' soit égal à la matrice identité. Il montre que les matrices inversibles de A sont celles pour lesquelles la matrice M est égale à 1 ou à -1. Il explique cela en utilisant l'identification des coefficients des matrices et en effectuant des calculs matriciels.
En conclusion, Corentin démontre que l'ensemble A est un sous-anneau de l'ensemble M2(R) et détermine les éléments inversibles de A.
Maths
Algèbre
MPSI/PCSI
Etude de permutations
Dans cette vidéo, Corentin aborde le sujet de l'arithmétique et de la structure algébrique. Il commence par définir l'ensemble A, qui est l'ensemble des rationnels ayant un dénominateur impair. L'objectif est de démontrer que A, muni de l'addition et de la multiplication usuelles, forme un anneau.
Pour montrer cela, Corentin montre que A est un sous-anneau de l'ensemble des rationnels (Q). Il le fait en montrant que pour tout X et Y appartenant à A, la différence (X - Y) et le produit (X * Y) appartiennent également à A. Pour cela, il utilise le fait que le dénominateur des fractions obtenues reste impair.
Corentin montre également que l'élément neutre (1) appartient à A, car il est égal à 1/1, où le dénominateur est impair.
Ensuite, Corentin cherche à déterminer les éléments inversibles de A. Soit X appartenant à A, il cherche un élément Y qui serait son inverse. Il montre que Y serait égal à 1/X. Cependant, la difficulté réside dans le fait de déterminer si cet inverse Y appartient toujours à A, qui n'est pas un ensemble aussi simple que les ensembles R et Q. En menant des calculs, Corentin trouve que pour que Y appartienne à A, il faut que X soit un nombre impair.
En résumé, les éléments inversibles de A sont de la forme M/N, où M est un nombre impair, N est un nombre entier non nul, et les deux M et N sont impairs.
Maths
Algèbre
MPSI/PCSI
Anneaux, éléments nilpotents
Dans cette vidéo, Corentin aborde le sujet des morphismes d'anneaux et explique comment démontrer que si X appartient à K privé de 0, alors F(X) est inversible, et comment déterminer son inverse. Il souhaite également montrer que tout morphisme de corps est toujours injectif.
Un morphisme d'anneaux est défini comme une application qui vérifie certaines propriétés, telles que F(X+Y) = F(X) + F(Y) et F(X*Y) = F(X) * F(Y).
Ensuite, en se basant sur le fait que K est un corps, Corentin montre que X est inversible car il existe X-1 tel que X*X-1 = 1 sur K. En composant les deux côtés par F, il sépare X et -1 en utilisant les propriétés du morphisme d'anneaux, et conclut que F(X) est inversible avec pour inverse F(X-1).
Dans la deuxième partie, Corentin rappelle une propriété importante : pour qu'un morphisme de corps soit injectif, son noyau doit être réduit à 0. Il suppose donc que F(X) = 0 et montre que cela signifie que X est égal à 0K, ce qui prouve que F est injectif.
En résumé, Corentin explique comment démontrer que F(X) est inversible et comment trouver son inverse lorsqu'on a un morphisme d'anneaux allant de K dans L. Il montre également que tout morphisme de corps est injectif en utilisant une propriété sur le noyau.