logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Écriture ensembliste

Dans cet exercice, nous avons trois événements A, B et C provenant de l'univers Omega. Nous devons les traduire en langage ensembliste en utilisant les symboles d'intersection, d'union et le complémentaire. Voici les résumés en langage SEO-friendly : 1. Seul A se réalise : A ∩ (B̅ ∩ C̅) ou A ∩ (B ∪ C̅) 2. A et B se réalisent, mais pas C : A ∩ B ∩ C̅ 3. Les trois événements se réalisent : A ∩ B ∩ C 4. Au moins l'un des trois événements se réalise : A ∪ B ∪ C 5. Au moins deux des trois événements se réalisent : (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) 6. Aucun ne se réalise : A̅ ∩ B̅ ∩ C̅ 7. Au plus l'un des trois se réalise : Ω̅ \ (A ∪ B ∪ C) 8. Exactement deux des trois se réalisent : (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C) ∩ (A̅ ∪ B̅ ∪ C̅)
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Probabilité de l’intersection

Dans cet exercice, nous cherchons à démontrer l'inégalité de la probabilité de l'intersection de deux événements. Selon la formule, la probabilité de l'intersection est comprise entre le maximum de 0 et la somme des probabilités des deux événements moins 1, et le minimum des probabilités de chaque événement. Pour démontrer le côté droit de l'inégalité, nous utilisons la formule et montrons que la probabilité de l'union de deux événements est plus grande que la probabilité de chaque événement individuellement. En remplaçant les valeurs, nous constatons que la probabilité de l'intersection est plus petite que la probabilité de chaque événement individuel et donc plus petite que le minimum des deux. Ensuite, nous démontrons l'égalité de l'autre sens en montrant que la probabilité de l'intersection est plus grande que le maximum des deux probabilités individuelles. Nous prouvons que la probabilité de l'intersection est plus grande que zéro en tant que probabilité, et en utilisant la formule, nous montrons qu'elle est également plus grande que le maximum des deux probabilités individuelles. En conclusion, cet exercice démontre l'inégalité de la probabilité de l'intersection de deux événements en utilisant des formules et des comparaisons de probabilités.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Inégalité de Bonferroni

Dans cet exercice, nous voulons démontrer la formule suivante en utilisant la récurrence : la probabilité de l'intersection de n événements est supérieure ou égale à la somme des probabilités moins n moins 1. Nous commençons par l'initialisation pour n égal à 2. La probabilité de l'intersection est égale à la probabilité de A1 plus la probabilité de A2 moins la probabilité de leur union, soit P(A1) + P(A2) - P(A1 ∪ A2) = P(A1) + P(A2) - 1. Nous obtenons bien moins 1 ici. Ensuite, nous passons à l'hérédité. La probabilité de l'intersection jusqu'à n plus 1 est égale à la probabilité de l'intersection jusqu'à n fois la probabilité de n plus 1 moins la probabilité de l'intersection avec A n plus 1. Nous utilisons la formule P(A ∪ B) = P(A) + P(B) - P(A ∩ B) que nous connaissons depuis longtemps. Notre hypothèse de récurrence nous dit que cette probabilité est supérieure ou égale à la somme des P(Ai) moins n moins 1. Nous réinjectons ensuite P(An+1) dans la somme, sachant que cette probabilité est plus petite que 1. Comme il y a un moins, le plus grand, cela nous convient parfaitement. Nous réinjectons cette probabilité dans la somme jusqu'à n plus 1 et nous obtenons moins n plus 1, le moins 1 ici, qui correspond à n plus 1 moins 1 dans la formule. L'hérédité est démontrée et la récurrence a été relativement rapide à faire. Nous avons bien obtenu la formule demandée. C'est tout pour cet exercice.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Loi de dés pipés

Dans cet exercice, on cherche à modéliser une expérience aléatoire avec un dé à six faces, où la probabilité d'obtenir une face est proportionnelle au chiffre sur cette face. Pour cela, on a défini un espace probabilisé où la probabilité de faire 1 est x, la probabilité de faire 2 est 2x, et ainsi de suite jusqu'à la probabilité de faire 6 qui est 6x, pour que les probabilités soient proportionnelles. On sait que la somme des probabilités de toutes les faces doit être égale à 1. Donc on a l'équation x + 2x + 3x + 4x + 5x + 6x = 1, ce qui donne 21x = 1, et donc x = 1/21. Maintenant, on veut calculer la probabilité d'obtenir un chiffre pair. Comme les événements sont disjoints, on peut simplement faire la somme des probabilités des faces paires, qui sont 2/21 + 4/21 + 6/21. En simplifiant par 3, on obtient 4/27. Ensuite, on reprend les questions en modifiant le dé à six faces pour que la probabilité d'obtenir une face paire soit le double de la probabilité d'obtenir une face impaire. On a donc x pour les faces impaires et 2x pour les faces paires. En utilisant la même méthode, on obtient x = 1/9 et les probabilités des faces paires sont 2/9 + 2/9 + 2/9, ce qui simplifie à 2/3.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Déterminer une loi

Dans cet exercice, on part de l'ensemble de nombres 1 à n et on cherche à trouver une probabilité proportionnelle à k² pour avoir l'ensemble 1 à k. On utilise la variable λ pour représenter cette probabilité et on sait que la probabilité d'avoir juste k est égale à λk² moins λ(k-1)². Après développement, on obtient 2λk-1 comme probabilité d'avoir juste k. On sait également que la probabilité d'avoir tout l'ensemble de 1 à n est égale à 1. En utilisant cette information, on peut déduire que λ est égal à 1/n². Ainsi, la probabilité d'avoir juste k parmi les nombres 1 à n est égale à (2k-1)/n². Voilà en résumé l'exercice.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Jeu de cartes

Dans cet exercice de ProBas, nous avons tiré simultanément 3 cartes au hasard dans un paquet de 32 cartes. La première question était de déterminer la probabilité d'obtenir uniquement des cœurs. Il y a 8 cœurs dans un jeu de 32 cartes, donc le nombre de tirages possibles pour avoir uniquement des cœurs est de 3 parmi 8. Le nombre total de tirages est de 3 parmi 32. En utilisant le concept d'équiprobabilité, la probabilité recherchée est le nombre d'issues favorables (3 parmi 8) divisé par le nombre d'issues totales (3 parmi 32), soit 7 sur 620. Ensuite, nous avons calculé la probabilité d'obtenir uniquement des As. Le nombre de tirages possibles pour avoir uniquement des As est de 3 parmi 4. Le nombre total de tirages est de 3 parmi 32. En effectuant le même raisonnement, la probabilité recherchée est 1 sur 1240. Enfin, nous avons abordé la dernière question : la probabilité d'obtenir 2 cœurs et 1 pic. Pour cela, nous avons calculé séparément le nombre de tirages possibles pour avoir 2 cœurs (2 parmi 8) et pour avoir 1 pic (1 parmi 8). En multipliant ces deux nombres, nous avons obtenu 7 fois 4 fois 8. Le nombre total de tirages était de 3 parmi 32, soit 32 fois 31 fois 30. En simplifiant les calculs, nous avons trouvé que la probabilité recherchée est de 7 sur 155. Voilà pour cet exercice.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Tombola

Dans cet exercice de probabilité, nous devons déterminer combien de billets il faut acheter dans une tombola de 1000 billets pour que la probabilité de gagner soit supérieure à 1,5. Nous notons N le nombre de billets à acheter et P la probabilité d'avoir au moins un billet gagnant. Pour calculer cette probabilité, nous utilisons la formule P = 1 - (N parmi 998) / (N parmi 1000), qui représente la probabilité d'avoir uniquement des billets perdants. Nous simplifions cette expression pour obtenir un polynôme du second degré, que nous souhaitons être supérieur ou égal à 1,5. En effectuant les calculs nécessaires, nous trouvons que le polynôme est de forme N² - 1999N + 1000 * 999 - 1,5. Nous trouvons les racines de ce polynôme, qui sont approximativement 292,75 et 1706,25. Entre ces deux valeurs, le polynôme est négatif, ce qui nous intéresse. Cependant, étant donné que nous ne pouvons pas acheter plus de 1000 billets, la valeur de 1706 ne nous concerne pas. Ainsi, à partir de 293 billets, nous avons plus de 50% de chances d'avoir au moins un billet gagnant.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Au moins un six

Dans cet exercice de probabilité, on lance un dé n fois. Le but est de calculer la probabilité d'obtenir des résultats différents à chaque fois, ainsi que la probabilité d'obtenir au moins une fois le chiffre 6, au moins deux fois le chiffre 6, et au moins k fois le chiffre 6. La probabilité d'obtenir des résultats différents à chaque fois est calculée en utilisant la formule 1 - (5/6)^n. La probabilité d'obtenir une fois le chiffre 6 est calculée en utilisant la formule (1/n) * (1/6) * (5/6)^(n-1). La probabilité d'obtenir au moins deux fois le chiffre 6 est calculée en utilisant la formule 1 - (1 - (1/n) * (1/6) * (5/6)^(n-1)). La probabilité d'obtenir au moins k fois le chiffre 6 est calculée en utilisant la formule 1 - (1 - (j/n) * (1/6)^j * (5/6)^(n-j)), pour j allant de 1 à k-1.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Indice de coïncidence d’un texte

Dans cet exercice, nous nous intéressons à l'indice de coïncidence dans un texte. Cet indice mesure la probabilité que deux lettres choisies au hasard dans le texte soient les mêmes. Pour calculer cet indice, nous utilisons la formule suivante : Na*(Na-1) / N*(N-1), où Na représente le nombre de fois où la lettre A apparaît dans le texte, et N représente le nombre total de lettres dans le texte. Cette formule est appliquée à chaque lettre de l'alphabet, afin de calculer l'indice de coïncidence global. Cet exercice nous permet de comprendre comment calculer cet indice et son utilisation dans l'analyse de textes.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Racines de polynômes

Cet exercice porte sur le lancer de trois dés à six faces. Les résultats obtenus sont notés ABC, et nous créons ensuite un polynôme Q avec ces coefficients ABC. Nous cherchons la probabilité que Q ait deux racines réelles distinctes. Pour cela, nous devons déterminer le cardinal d'Oméga, qui représente toutes les issues possibles, soit 216 possibilités. Nous voulons que B²-4ac soit strictement positif pour avoir deux racines réelles distinctes. A est l'événement défini comme étant l'ensemble des triplés ABC tels que B²-4ac soit strictement positif. Nous allons donc calculer le cardinal de A en listant toutes les valeurs possibles pour 4ac et en comptant combien de ces valeurs permettent d'obtenir un B²-4ac strictement positif pour chaque valeur de B. En total, il y a 38 possibilités pour que B²-4ac soit strictement positif, et donc le cardinal de A est égal à 38. La probabilité de A est donc de 38 sur 216, soit 19 sur 108. Nous répétons le même raisonnement pour calculer les probabilités de B (racine réelle double) et de C (pas de racine réelle). En utilisant la relation P de C = 1 - P de A - P de B, nous trouvons que la probabilité de C est de 173 sur 216.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Matrice diagonale

Bienvenue dans cet exercice qui mélange probabilités et matrices. On nous décrit E comme l'ensemble des matrices 2x2, avec des coefficients réels valant 0 ou 1. L'expérience aléatoire que nous faisons est de tirer au hasard une matrice de cet ensemble et d'étudier 4 événements : A (matrice diagonale), B (matrice triangulaire supérieure non diagonale), C (matrice triangulaire inférieure non diagonale) et D (matrice non triangulaire). Pour déterminer la probabilité de chacun de ces événements, on utilise la méthode classique : on compte le nombre de matrices correspondant à chaque événement et on divise par le nombre total de matrices. Pour A, il faut que les coefficients ε2 et ε3 soient égaux à 0, et les coefficients ε1 et ε4 peuvent prendre n'importe quelle valeur. Cela nous donne 4 possibilités. Donc la probabilité de A est de 1/4. Pour B, il faut que le coefficient ε2 soit égal à 1 et le coefficient ε3 soit égal à 0. Les coefficients ε1 et ε4 peuvent prendre n'importe quelle valeur. Cela nous donne également 4 possibilités. Donc la probabilité de B est de 1/4. Pour C, on fait le même raisonnement que pour B, mais en inversant les coefficients ε2 et ε3. Donc la probabilité de C est également de 1/4. Pour D, on aurait pu regarder toutes les possibilités restantes, mais il suffit de voir que les matrices non triangulaires ont aussi 4 possibilités. Donc la probabilité de D est de 1/4. Ensuite, on nous demande de déterminer la probabilité que les matrices soient diagonalisables. Les matrices de A sont diagonales, donc elles sont toutes diagonalisables. Pour les matrices de B et C, elles sont triangulaires et donc pour qu'elles soient diagonalisables, il faut que les valeurs propres ne soient pas des racines multiples. Pour cela, il faut que les valeurs sur la diagonale soient différentes (0 ou 1). Il y a donc 2 possibilités pour chaque coefficient. Pour les matrices de D, toutes sont diagonalisables. En résumé, on a 12 matrices diagonalisables sur les 16 matrices possibles. Donc la probabilité qu'une matrice soit diagonalisable est de 3/4.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Le problème des anniversaires

Dans cet exercice, nous explorons le paradoxe des anniversaires, qui met en évidence que la probabilité que deux personnes aient la même date d'anniversaire est plus élevée que ce que l'on pourrait penser. Dans une classe de 30 élèves, le professeur de maths propose un pari : il parie que deux personnes dans cette classe ont la même date d'anniversaire. La question est de savoir si nous acceptons le pari ou non. Pour faciliter les calculs, nous excluons le 29 février. Ainsi, chaque personne a 365 jours possibles pour son anniversaire, car aucune date n'a encore été sélectionnée. La première personne a donc 365 choix, la deuxième en a 364, et ainsi de suite jusqu'à la trentième, qui a 336 choix restants. Nous calculons ensuite la probabilité que deux personnes n'aient pas la même date d'anniversaire. Pour chaque personne, cette probabilité est donnée par le rapport entre le nombre de choix possibles et le nombre total de jours dans l'année (365). Maintenant, pour trouver la probabilité que deux personnes aient la même date d'anniversaire, nous calculons le complément de la probabilité précédente (c'est-à-dire 1 moins la probabilité que deux personnes n'aient pas la même date d'anniversaire). Ce calcul nous donne environ 0,706, ce qui signifie qu'il y a environ 70% de chances qu'au moins deux personnes dans la classe aient la même date d'anniversaire. En conclusion, il est préférable de refuser le pari du professeur, car il a plus de chances de gagner.